如何实现人工智能与大数据相结合
首先,两者都在发展过程中。
实现两者结合,面临两个相反的发展方向:
一、保持现有系统技术不变,而收集得到的大数据,做为主导。
人工智能的发展,为大数据的使用提供技术支持。
人工智能技术处于从属地位。
显然,这样束缚了人工智能的发展。
采用这种思路的公司,最终结局是,大数据业务被新兴的人工智能公司抢占。
二、放弃现有大数据所依赖的成熟的系统技术。
人工智能独立发展,成熟以后,现有的大数据资源再与人工智能系统改码对接。
这个问题,等于人工智能的发展方向问题。
要搞一种依赖现有编码语言的应用技术呢?
还是要搞一种电子产品人格化的基础技术?
若决心搞后者,可不仅仅要颠覆应用软件与操作系统,甚至硬件、芯片,都必须改动。
所以,那个战胜李世石的阿拉法狗,没有前途。
程序化的人工智能,一路艰辛,没有前途。
人格化的人工智能,才是光明大路。而且比多数人想象的要容易得多。
附加说明:
程序化与人格化的主要差别是什么?
程序化人工智能,
内容与形式层层分离。
数码段的编码方案出自人为约定。依赖单是非逻辑。
数码段具备的含义,需要层层翻译。
各输入输出设备之间,不具有如同量子纠缠一样的含义纠缠关系。
人格化人工智能,
内容与形式和谐统一。
数码编码方案出自人的注意力运行原理。依赖多是非逻辑。
从输入到运算,到输出,结构简洁,一体和谐同步。含义相互纠缠,如同一体。
不需要设备驱动程序,也不需要应用程序,只有一个操作系统。或改名叫做运行系统。
大数据、BI、AI,三者之间的关系是什么?
数据是企业的生产资料,BI帮助企业梳理生产关系,而AI则是一种更先进的生产力,它能够帮助把业务专家、数据分析师等人所积累的业务经验和知识,固化到系统,进而使它演变成企业长久的数据资产。观远数据AI+BI的商业智能解决方案正是基于这种理念下的产物。观远数据首创性地提出一整套从BI(基础分析)到AI(智能决策)的完整“5A”落地路径方法论,立足于自身在基础数据分析的出色实力,引入AI预测引擎填补了传统人工运营的前瞻性与实用性,助力企业构建最强决策大脑。目前观远数据已与联合利华、百威英博、迪卡侬等知名零售客户达成众多优秀的数据分析与AI技术深度融合的商业落地解决方案。